Customization: | Available |
---|---|
After-sales Service: | 24/7 After Sales Services |
Warranty: | 12 Months From Delivery |
Still deciding? Get samples of US$ 400/Piece
Order Sample
|
Shipping Cost: | Contact the supplier about freight and estimated delivery time. |
---|
Payment Methods: |
|
---|---|
Support payments in USD |
Secure payments: | Every payment you make on Made-in-China.com is protected by the platform. |
---|
Refund policy: | Claim a refund if your order doesn't ship, is missing, or arrives with product issues. |
---|
Suppliers with verified business licenses
Audited by an independent third-party inspection agency
Product Overview
The ZZYS30 vortex flowmeter is an advanced velocity flow instrument designed for a myriad of applications.
It is perfectly crafted for measuring, monitoring, and managing the flow of liquids, steam, and a diverse array of gases.
Featuring a cutting-edge design, it boasts resistance to mechanical vibrations, impacts, and contamination, ensuring long-term reliability.
Engineered with precision, it includes no moving parts, thus eliminating wear and tear, and mechanical maintenance needs. It ensures low pressure loss, consistent performance, and exceptional accuracy.
Its user-friendly installation allows for customized matching of the sensor and signal converter as per requirement.
Product features:
Versatile application: Ideal for measuring the flow of steam, gas, and liquid.
Superior vibration resistance: Zero drift at zero point, effectively nullifying the impact of external vibrations.
The ZZY30 offers integrated temperature and pressure options, significantly reducing installation costs for users.
Multiple output options: (0-5) kHz frequency output, (4-20) mA output, or HART/Modbus protocol communication.
Bluetooth-enabled for parameter setting. Durability is assured with wear and dirt resistance, no mechanical maintenance needed, long service life, and explosion-proof safety.
Technical Index
Measurement Medium: Gas, Liquid, Steam
Connection Method: Flange Clamp Type, Flange Type, Insertion Type
Caliber Specifications:
Flange Clamping Type: 25, 32, 50, 80, 100.
Flange Connection Type: Caliber Selection 100, 150, 200
Flow Measurement Range: Normal Measurement Flow Velocity Range Reynolds Number 1.5×10^4~4×10^6; Gas 5~50m/s; Liquid 0.5~7m/s.
Normal Measurement Flow Range: Liquid,
Gas Flow Measurement Range: See Table 2.
Steam Flow Range: See Table 3.
Measurement Accuracy: 1.0 Class, 1.5 Class
Measured Medium Temperature:
Room Temperature: -25ºC~100ºC, High Temperature: -25ºC~150ºC, -25ºC~250ºC. Output Signal: Pulse Voltage Output Signal, High Level 8~10V, Low Level 0.7~1.3V. Pulse Duty Cycle: About 50%, Transmission Distance: 100m
Pulse Current Remote Transmission Signal: 4-20 mA, Transmission Distance: 1000m. Instrument Use Environment: Temperature: -25ºC~+55ºC, Humidity: 5~90% RH50ºC. Material: Stainless Steel, Aluminum Alloy
Power Supply: DC24V or Lithium Battery 3.6V
Explosion-Proof Grade: Intrinsically Safe iaIIbT3-T6, Protection Level IP65.
Technical parameters | |
Medium | Steam, Gas, Liquid |
Measuring range | See flow1-3 |
Caliber | DN15, DN25, DN40, DN50, DN80, DN100, DN200, DN250, DN300 |
Medium pressure | ≤100 bar, more pressure need be customized |
Medium temperature | -40°C~+240°C |
Ambient temperature | Ordinary type: -40°C~+85°C Ex-proof type: -40°C~+60°C |
Accuracy | Liquid, Re≥20000 is ±1.0%, gas and steam, ±1.5% |
Repeatability | ±0.3% |
Material | Measuring pipe:304,316L, HC276 |
Sensor: 316L, HC276 | |
Converter shell: casting aluminum | |
Instrument caliber | Flange connection: DN15-DN300 |
Clamping connection: DN15-DN100 | |
Flange standard | DIN, ANSI, HG20592 (Can be customized) |
Pressure loss Gasandliquid saturated steam |
ΔP=Cqv²Px ΔP: pressure loss(pa) qv: volume flow qm: mass flow ΔP=Cqm²Px PX: density C: constent |
Display | Two-line LCD display, four button operation Instantaneous flow, accumulated flow, vortex frequency, medium temperature, pressure(selectable), circular or non-circular display |
Power supply | Ordinary type: (14~36) VDC Ex-proof type: (14~30) VDC Battery power supply |
Loading | No-ex-proof: RB=(UB-14DVC)/22MA≤1200Ω Ex-proof: RB=(UB-14DVC)/22MA≤600Ω |
Output | Two wire 4~20mA |
Ex-proof class | Exd II CT6 CE19.1438 Ex ( ia ) II CT6 |
Cable interface | 1/2''NPT( Internal thread, recommended), M201.5 (Internal thread) |
Housing protection class | IP67 |
Connection type | Flange (DN15-DN300), Clamping (DN15-DN100) |
Mounting type | Integral mounting, split mounting (special shielded cable connect the pipe and indicator) |
Gas | |||
Air: t=20°C p=1.013bar abs =1.7210-4 mpa.s Q: flow (sheet 1) | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 6.79 | 32.56 |
DN25 | 24 | 10.20 | 113.94 |
DN40 | 38 | 25.3 | 326.63 |
DN50 | 50 | 43.89 | 565.49 |
DN80 | 74 | 96.14 | 1238.64 |
DN100 | 97 | 165.14 | 2128.27 |
DN150 | 146 | 374.23 | 4821.57 |
DN200 | 193 | 702.95 | 9056.8 |
DN250 | 253 | 1123.7 | 14478 |
DN300 | 305 | 1632.1 | 21028 |
Liquid | |||
Water: t=20°C p=1.013bar abs ≤10cp Q: flow | |||
Nominal diameter | Internal diameter | Qmin(m3/h) | Qmax(m3/h) |
DN15 | 16 | 0.45 | 5 |
DN25 | 24 | 0.81 | 11.40 |
DN40 | 38 | 2.04 | 28.57 |
DN50 | 50 | 3.53 | 49.47 |
DN80 | 74 | 7.74 | 108.37 |
DN100 | 97 | 13.30 | 186.21 |
DN150 | 146 | 30.13 | 421.86 |
DN200 | 193 | 52.66 | 792.42 |
DN250 | 253 | 90.5 | 1266.8 |
DN300 | 305 | 113.41 | 1839.8 |
Saturated steam | |||||||||
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=1bar G | P=3.5bar G | P=5.2bar G | P=7 bar G | ||||||
ρ=1.13kg/m3 | ρ=2.43kg/m3 | ρ=3.28kg/m3 | ρ=4.17kg/m3 | ||||||
t=120.6°C | t=148.2°C | t=160.4°C | t=170.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 5.87 | 36.97 | 7.68 | 79 | 8.93 | 106.68 | 10.06 | 135.69 |
DN25 | 24 | 11.82 | 129.39 | 17.26 | 276.4 | 20.09 | 373.53 | 22.66 | 474.82 |
DN40 | 38 | 29.64 | 370.71 | 43.33 | 792.33 | 50.63 | 1070.2 | 56.8 | 1361.2 |
DN50 | 50 | 51.31 | 641.82 | 75.02 | 1371.8 | 87.19 | 1852.8 | 98.33 | 2356.6 |
DN80 | 74 | 112.41 | 1405.8 | 164.33 | 3004.7 | 191 | 4058.4 | 215.39 | 5161.8 |
DN100 | 97 | 193.14 | 2415.5 | 282.36 | 5162.7 | 328.16 | 6973.3 | 370.09 | 8869.2 |
DN150 | 146 | 437.56 | 5472.4 | 639.69 | 11696 | 743.45 | 15798 | 838.44 | 20093 |
DN200 | 193 | 821.91 | 10279 | 1201.6 | 21970 | 1396.5 | 29675 | 1574.9 | 37743 |
DN250 | 253 | 1313.9 | 16433 | 1920.9 | 35122 | 2232.5 | 47439 | 2517.7 | 60337 |
DN300 | 305 | 1908.3 | 23866 | 2789.8 | 51010 | 3242.4 | 68899 | 3656.6 | 87630 |
Nominal Diameter |
Inner Diameter |
Mass flow Qm (kg/h) under different pressure and density | |||||||
P=10.5 bar G | P=14 bar G | P=17.5 bar G | P=20 bar G | ||||||
ρ=5.89kg/m3 | ρ=7.6kg/m3 | ρ=9.32kg/m3 | ρ=10.54kg/m3 | ||||||
t=186.2°C | t=198.5°C | t=208.5°C | t=215.6°C | ||||||
min | max | min | max | min | max | min | max | ||
DN15 | 16 | 12.78 | 191.71 | 16.51 | 247.55 | 20.23 | 303.36 | 22.89 | 343.32 |
DN25 | 24 | 26.93 | 670.88 | 30.6 | 857.88 | 33.87 | 955.48 | 36.04 | 1201.41 |
DN40 | 38 | 67.51 | 1878.2 | 76.72 | 2150.7 | 84.93 | 2395.3 | 90.35 | 2557.7 |
DN50 | 50 | 116.89 | 3251.7 | 132.82 | 3723.4 | 147.03 | 4147 | 156.42 | 4428.1 |
DN80 | 74 | 256.03 | 7122.4 | 290.93 | 8155.8 | 322.06 | 9083.7 | 342.62 | 9699.3 |
DN100 | 97 | 439.91 | 12238 | 499.9 | 14013 | 553.38 | 15608 | 588.69 | 16666 |
DN150 | 146 | 996.62 | 27725 | 1132.5 | 31747 | 1253.7 | 35359 | 1333.7 | 37756 |
DN200 | 193 | 1872.1 | 52079 | 2127.3 | 59634 | 2354.9 | 66419 | 2505.2 | 70921 |
DN250 | 253 | 2992.7 | 83254 | 3400.71 | 95333 | 3764.6 | 106180 | 4004.9 | 113380 |
DN300 | 305 | 4346.5 | 120920 | 4939.1 | 138460 | 5467.5 | 154210 | 5816.5 | 164660 |
Selection list | ||||||||
model | Explanation | |||||||
ZZY30 | ||||||||
Connection | F | Flange connection | ||||||
W | Flange clamping | |||||||
Temperature Resistance Class |
T1 | Match with 250°c probe | ||||||
T2 | Match with 350°c probe | |||||||
Nominal diameter |
015 | DN15 | ||||||
020 | DN20 | |||||||
025 | DN25 | |||||||
032 | DN32 | |||||||
040 | DN40 | |||||||
050 | DN50 | |||||||
065 | DN65 | |||||||
080 | DN80 | |||||||
100 | DN100 | |||||||
125 | DN125 | |||||||
150 | DN150 | |||||||
200 | DN200 | |||||||
250 | DN250 | |||||||
300 | DN300 | |||||||
Structure |
Z | Integrated T and P compensation | ||||||
F | Regular model | |||||||
S | Split | |||||||
Material | R1 | 304 | ||||||
RL | 316L | |||||||
Instrument model |
N | 24V power supply Output 3 wire pulse | ||||||
V1 | 24V power, on-site display, 4-20mA, RS485, Impulse output | |||||||
V1 B |
24V +battery power supply, on-site display, 4-20 mA, RS485, pulse output | |||||||
Pressure Class | N | Normal | ||||||
H | High pressure |
PACKING & SHIPPING
We commit to delivering your order at the earliest possible date, as per your requirements, ensuring timely and efficient service.Installation Requirements
Piping condition
The installation of the vortex flowmeter mandates a specific straight pipe section both upstream and downstream. The typical configurations are as follows (D represents the pipe diameter):
Piping condition | upstream | Downstream |
Concentric shrinkage pipe full open gate valve |
15D | 5D |
∠90° square elbow | 20D | 5D |
Same plane 2∠90°elbow | 25D | 5D |
Semi-open gate valve regulating valve | 50D | 5D |
Different plane 2∠90°elbow | 40D | 5D |
With rectifier tube bundle | 12D | 5D |
1.
The sensor should be mounted on a horizontal, vertical, or inclined pipe (with liquid flowing bottom to top) matching the sensor's diameter. Ensure straight pipe sections: 15-20D upstream and 5-10D downstream.
2.
The pipe adjacent to the liquid sensor must be completely filled with the liquid being measured.
3.
Avoid installing the sensor on pipes experiencing strong mechanical vibrations.
4.
The inner diameter of the straight pipe should closely match the sensor diameter. If a match isn't possible, use a slightly larger diameter pipe with an error of ≤3% and not exceeding 5mm. Avoid strong electromagnetic interference, constrained spaces, or areas difficult to maintain..
5.
For horizontal pipeline installation, commonly used for flow sensors: when measuring gas flow with minor liquid content, position the sensor at a higher pipeline point; for liquid flow with minor gas content, position it at a lower point.
6.
Vertical pipeline sensor installation: for gas flow, without flow direction restriction. If gas contains liquid, flow should be bottom to top. For liquid flow, ensure it moves bottom to top to reduce probe weight.
7.
Side mounting on horizontal pipelines: applicable to any fluid measurement, especially superheated steam, saturated steam, and low-temperature liquids. Prefer side mounting to minimize amplifier temperature impact.
8.
Inverted horizontal pipeline sensor installation: generally discouraged, unsuitable for general gases or superheated steam. Suitable for saturated steam and high-temperature liquids, or for frequently cleaned pipelines.
9.
Sensors on insulated pipelines: for high-temperature steam, the insulation layer must not exceed one-third of the bracket height.
10.
Selecting pressure and temperature measurement points: position pressure measurement 3-5D downstream of the sensor, and temperature measurement 6-8D downstream, based on specific measurement needs.